Klasifikasi Gejala Awal Covid-19 dengan Algoritma Classification and Regression Tree (Cart)

Agung Alamsyah, Anita Desiani, Endro Setyo Cahyono

Abstract


COVID-19 is a disease that can cause death and can spread to others. By identifying early symptoms of the disease, early detection can be made for several symptoms that may cause COVID-19. One way to predict COVID-19 is through classification methods. By identifying the symptoms that have an impact on COVID-19, it is hoped that the COVID-19 virus can be stopped from spreading and the world's condition can be normal. This study shows an analysis of attributes that may have an impact on the onset of COVID-19 in an individual. The classification method used is one of the decision tree methods, namely the Classification and Regression Tree (CART). The training and testing methods used in this study are cross-validation and percentage split. The attribute that has a significant influence in this classification using CART method is lung infection. The performance of the system using cross-validation method with a value of k of 10 obtained an accuracy of 85%, which is considered good, while using a percentage split of 66%, an accuracy of 87% was obtained. The evaluation results for the class indicating COVID-19 with precision and recall in cross-validation are 70% and 68%, respectively, while for the percentage split method, precision and recall values of 75% and 70% were obtained, respectively.


Keywords


COVID-19, Classification, Classification and Regression Tree, Decision Tree

References


Ahamad, M. M., Aktar, S., Rashed-Al-Mahfuz, M., Uddin, S., Liò, P., Xu, H., Summers, M. A., Quinn, J. M. W., & Moni, M. A. (2020). A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert systems with applications, 160, 113661.

Bagus, C., & Imron, M. (2018). Klasifikasi Buah Mangga Berdasarkan Tingkat Kematangan Menggunakan Least-Squares Support Vector Machine. Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika, 10(2), 1–8. https://doi.org/10.35891/explorit.v10i2.1255

Izzati Rahmi, & Hazmira Yozza. (2020). Analisis Kausal Masa Studi Mahasiswa Program Studi Matematika Universitas Andalas Dengan Menggunakan Metode Cart. Jurnal Matematika Sains dan Teknologi, 21(1), 22–34. https://doi.org/10.33830/jmst.v21i1.697.2020

Kebonye, N. M. (2021). Exploring the novel support points-based split method on a soil dataset. Measurement: Journal of the International Measurement Confederation, 186, 110131. https://doi.org/10.1016/j.measurement.2021.110131

Latifah, R., Wulandari, E. S., & Kreshna, P. E. (2019). Model Decision Tree Untuk Prediksi Jadwal Kerja Menggunakan Scikit-Learn. Jurnal Universitas Muhammadiyah Jakarta, 1–6. https://jurnal.umj.ac.id/index.php/semnastek/article/download/5239/3517

Lestawati, R., Rais, R., & Utami, I. T. (2018). Perbandingan Antara Metode Cart (Classification and Egression Tree) Dan Regresi Logistik (Logistic Regression) Dalam Mengklasifikasikan Pasien Penderita Dbd (Demam Berdarah Dengue). Jurnal Ilmiah Matematika Dan Terapan, 15(1), 98–107.

Li, J., Xu, Q., Cuomo, R., Purushothaman, V., & Mackey, T. (2020). Data Mining and Content Analysis of the Chinese Social Media Platform Weibo During the Early COVID-19 Outbreak: Retrospective Observational Infoveillance Study. JMIR Public Health Surveill, 6(2), e18700. https://doi.org/10.2196/18700

Mileman, P. A. (2001). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference on Artifical Intelligence (IJCAI), 30(2), 133–133.

Monalisa, S., & Hadi, F. (2020). Penerapan Algoritma CART Dalam Menentukan Jurusan Siswa di MAN 1 Inhil. Jurnal Sisfokom (Sistem Informasi dan Komputer), 9(3), 387–394. https://doi.org/10.32736/sisfokom.v9i3.932

Muhammad, L. J., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery. SN Computer Science, 1(4), 1–7. https://doi.org/10.1007/s42979-020-00216-w

Pratiwi, B. P., Handayani, A. S., & Sarjana, S. (2021). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix. Jurnal Informatika Upgris, 6(2), 66–75. https://doi.org/10.26877/jiu.v6i2.6552

Santhanam, T., & Sundaram, S. (2010). Application of CART algorithm in blood donors classification. Journal of Computer Science, 6(5), 548–552. https://doi.org/10.3844/jcssp.2010.548.552

Stothers, L., Guevara, R., & Macnab, A. (2010). Classification of Male Lower Urinary Tract Symptoms Using Mathematical Modelling and a Regression Tree Algorithm of Noninvasive Near-Infrared Spectroscopy Parameters. European Urology, 57(2), 327–333. https://doi.org/https://doi.org/10.1016/j.eururo.2009.05.004

Suntoro, J. (2019). Data Mining Algoritma dan Implementasi dengan Pemrograman PHP. In Elex Media Komputindo (Vol. 1). Elex Media Komputindo.


Full Text: PDF

DOI: 10.24269/jkt.v7i2.2095

Refbacks

  • There are currently no refbacks.