IMPLEMENTASI TENSOR FLOW LITE PADA TEACHABLE UNTUK IDENTIFIKASI TANAMAN AGLONEMA BERBASIS ANDROID

Muhammad Bagus Baihaqi, Yovi Litanianda, Andy Triyanto

Abstract


Aglonema or sri fortune has various types with various shapes, patterns and colors. Various types and more and more due to the many crossing processes carried out by owners and lovers of aglonema plants. For ordinary people who do not have insight into aglonema, it will be difficult to distinguish aglonema plants because the shapes, patterns and colors have similarities. It takes a Teachable Machine system with a complex but more sophisticated method that is able to recognize plants with a higher level of accuracy. The machine learning process is carried out on a computer to identify image data into classification results in the form of predictions. Tensorflow lite is a machine learning library specially designed for object recognition. Therefore, researchers are encouraged to create an Android-based mobile application that is able to recognize aglonema plants quickly, easily and accurately. 


Keywords


Aglonema, Android, TensorFlow, Identifica

References


Alamsyah, Slamet Fifin. "Implementasi Deep

Learning untuk Klasifikasi Tanaman Toga

Berdasarkan Ciri Daun Berbasis Android." Ubiquitous: Computers and its

Applications Journal 2.2 (2019): 113-122.

Arifianto, July, and Izzati Muhimmah. "Aplikasi

Web Pendeteksi Jerawat Pada Wajah Menggunakan Algoritma Deep Learning

dengan TensorFlow." AUTOMATA 2.2

(2021).

Dwiatmoko, Widhar, and Ir Bana

Handaga. Perancangan Sistem Pengenalan Jenis Tanaman Obat Dengan Kamera

Berbasis Android. Diss. Universitas

Muhammadiyah Surakarta, 2020.

Fauzi, Imam, and Ardianto Moenir. "Klasifikasi

Spesies Tanaman Magnolia Menggunakan Metode Convolutional Neural Networks." Journal of Artificial Intelligence and Innovative Applications

(JOAIIA) 2.3 (2021): 235-239.

Ilahiyah, Sarirotul, and Agung Nilogiri.

"Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional

Neural Network." JUSTINDO (Jurnal Sistem Dan Teknologi Informasi

Indonesia) 3.2 (2018): 49-56.

Kartarina, Kartarina, et al. "Deep Learning Identifikasi Tanaman Obat Menggunakan Konsep Siamese Neural Network." JTIM: Jurnal Teknologi Informasi Dan Multimedia 2.4 (2021):

-228.

Saputra, Rizal Amegia, et al. "Penerapan

Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun

Padi." Swabumi 9.2 (2021): 184-188.

Wantania, Beatrix BM, Sherwin RUA Sompie, and

Feisy D. Kambey. "Penerapan Pendeteksian Manusia Dan Objek Dalam Keranjang Belanja Pada Antrian Di Kasir." Jurnal Teknik Informatika 15.2

(2020): 101-108


Full Text: PDF

DOI: 10.24269/jkt.v6i1.1143

DOI (PDF): https://doi.org/10.24269/jkt.v6i1.1143.g584

Refbacks

  • There are currently no refbacks.