Analisis Sentimen Ulasan Pembeli pada Toko Skincare Lokal Marketplace Tokopedia menggunakan Metode Sentistrength dan Naïve Bayes Classifier
Abstract
Marketplace is an online buying and selling place increasingly in demand by Indonesians. One of the marketplaces with the most visits according to SimilarWeb data is Tokopedia. On Tokopedia, there is a review feature where buyers can send their opinions as criticism or suggestions. Local skincare brands in this research include Avoskin, Azarine, Skin Game, and Somethinc. Buyer reviews listed in each store are triggers for transactions. The purpose of this research is to analyze the sentiment of buyer reviews at local skincare stores on Tokopedia using the SentiStrength method and Naïve Bayes Classifier. Sentiment analysis is carried out to divide buyer review data into negative, neutral, and positive sentiments using a model created with Naïve Bayes Classifier with training and testing data labeled manually using the SentiStrength ID dictionary. Data collection was done using web scraping of 247 data from four stores. The sentiment prediction model uses dataset labeling with SentiStrength ID and a Naïve Bayes Classifier. The process involves the use of complete stopwords without stemming. This model achieved a training accuracy of 94%. However, the testing accuracy only reached 68%. Based on data scraping from 300 reviews, Avoskin has 151 positive reviews, 67 negative reviews, and 8 neutral reviews. Meanwhile, Azarine has 152 positive reviews, 58 negative reviews, and 8 neutral reviews. Skin Game has 186 positive reviews, 54 negative reviews, and 17 neutral reviews. Somethinc has 187 positive reviews, 47 negative reviews, and 20 neutral reviews.
References
Adlina, F. (2022). ANALISIS SENTIMEN ONLINE CUSTOMER REVIEW PADA TOKO SMARTPHONE DAERAH ISTIMEWA YOGYAKARTA DI E-MARKETPLACE SHOPEE MENGGUNAKAN LEXICON BASED DAN WORD CLOUD. Universitas Islam Indonesia Yogyakarta.
Bayhaqy, A., Sfenrianto, S., Nainggolan, K., & Kaburuan, E. R. (2018). Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes. 2018 International Conference on Orange Technologies (ICOT), 1–6. https://doi.org/10.1109/ICOT.2018.8705796
Farros, H., Shinta, A., Zaid, Z., & Pasca Al Bahy, M. (2022). Evaluating the Effect of EFL College Students’ Intention To Utilize Mobile English Vocabulary in The Learning Process: A TAM Framework. VELES Voices of English Language Education Society, 6(1), 91–101. https://doi.org/10.29408/veles.v6i1.5277
Hafiz, Y. A., & Sudarmilah, E. (2023). IMPLEMENTASI WEB SCRAPING PADA PORTAL BERITA ONLINE. Inisiasi, 55–60. https://doi.org/10.59344/inisiasi.v12i1.120
Krisnawati, M. (2023, September 19). Pangsa Pasar Besar, Industri Kosmetik Indonesia Makin ‘Glowing’ RRI (Radio Republik Indonesia). https://www.rri.co.id/bisnis/365453/pangsa-pasar-besar-industri-kosmetik-indonesia-makin-glowing
Kurnia, W. (2023). Sentimen Analisis Aplikasi E-Commerce Berdasarkan Ulasan Pengguna Menggunakan Algoritma Stochastic Gradient Descent. Jurnal Teknologi Dan Sistem Informasi, 4(1), 138–143.
McCabe, K. (2020, September 28). 51 Customer Review Statistics to Make You Rethink Using Them. Learn G2. https://learn.g2.com/customer-reviews-statistics
Putri, S. R., & Amalia, R. (2018). PENGARUH E-WOM TERHADAP CITRA PERUSAHAAN DAN DAMPAKNYA TERHADAP NIAT BELI KONSUMEN PADA SITUS ONLINE SHOPEE. ID. Jurnal Ilmiah Mahasiswa Ekonomi Manajemen, 3(2), 75–84.
Rachman, R., & Handayani, R. N. (2021). Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM. Jurnal Informatika, 8(2), 111–122. https://doi.org/10.31294/ji.v8i2.10494
Uyun, N. A. (2023). Pengaruh Elektronik Word of Mouth terhadap Minat Beli Skincare dan Kosmetik Lokal secara Online melalui Kepercayaan. Strata, 1(2), 82–90.
Wahid, D. H., & Azhari, S. (2016). Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 10(2), 207–218.
Zhafira, D. F., Rahayudi, B., & Indriati, I. (2021). Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube. Jurnal Sistem Informasi, Teknologi Informasi, Dan Edukasi Sistem Informasi, 2(1), 55–63. https://doi.org/10.25126/justsi.v2i1.24
DOI: 10.24269/jkt.v8i2.2893
Refbacks
- There are currently no refbacks.