Perbandingan Algoritma LBP dan Cascading LBP-GLCM untuk Ekstraksi Fitur pada Citra Beras

Arief Rahman, Febriyanti Darnis, Yulian Ansori

Abstract


This study compares two image feature extraction algorithms: Gray Level Co-occurrence Matrix (GLCM) and a combination of Local Binary Pattern with GLCM (LBP GLCM), for rice image classification. The objective is to evaluate the effectiveness of both methods in generating features such as ASM, contrast, correlation, entropy, and energy, as well as to measure the computational time. The results show that the LBP GLCM algorithm significantly improves classification accuracy compared to pure GLCM, but requires 13-17 times longer computational time. While GLCM is more efficient in terms of time, its classification accuracy is relatively lower. These findings align with previous studies indicating that adding LBP to GLCM enhances classification performance. In conclusion, LBP GLCM is superior in accuracy, making it a better choice for applications that prioritize precise classification results. However, the trade-off in computational time should be considered, especially for applications requiring fast processing. These findings are relevant for further development in agriculture and image processing.

 


Keywords


LBP, GLCM, Computation Time, Comparation

References


C. D. Marnelius, K. Usman, N. K. C. Pratiwi. (2023). ”Klasifikasi Jenis Beras Berbasis Citra Dengan Menggunakan Deep Learning”, e-Proceding of Engineering, 10(5), 4211-4216.

D.G. Patria, Sukamto, Sumarji. 2021. Rice Scinece and Teknology(Ilmu dan teknologi beras. 2021

Y. A. Prajasa, S. Agustin, U. Chotijah, F. Mara’i. (2022). “Perbandingan Metode GLCM dan LBP Dalam Klasifikasi Jenis Kayu”, Indexia: Informatic and Computational Intelligent Journal”, 4(2), 60-84.

A. S. P. Neneng, A. S. Puspaningrum, A. A. Aldino. (2021). Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co- occurrence Matrices (GLCM) dan Local Binary Pattern (LBP). SMATIKA Jurnal, 11(1).

D. Indra, H. M. Fadillah, Kasman, L. B. Ilmawan. (2021). “Rice Texture Analysis Using GLCM Features”, Proc. Of the Internasional Conference on Electrical, Computer and Energi Technologies (ICECET).

P. N. Andono, E. H. Rachmawanto. (2021) “Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik”, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(1), 1-9.

S. A. R. Srg, M. Zarlis, Wanayumin. (2022). “Klasifikasi Citra Daun dengan GLCM dan K-NN”, Matrik: Journal Manajemen, Teknik Informatika, dan Rekayasa Komputer. 21(2), 477-486.

A. Sapitri, J. Raharjo, S. Rizal. (2022). “Identifikasi Penyakit Jagung dengan menerapkan metode Gray level Co- Occurence Matrix (GLCM) dan Support Vector Machine (SVM) melalui Citra Daun”, e-Proceding of Engineering, 8(6), 2963-2971.

L. Alwi, A. T. Hermawan, Y. Kristian. (2019). “Identifikasi Biji-Bijian berdasarkan Ekstraksi Fitur Warna, Bentuk dan Tekstur Menggunakan Random Forest”, Journal of Intelligent System and Computation, 1(2), 92-98

J. Lize, V. Debordes, H. Lu, K. Kpalma, J. Ronsin. (2020). “Local Binary Pattern and its Variants: Application to Face Analysis”, Advances in Smart Technologies: Applications and Case Studies - Selected Papers from the First International Conference on Smart Information and Communication Technologies, SmartICT 2019, 94-102.

S. Ashari, I. Ernawati. (2020). “Klasifikasi Tanaman Obat untuk Penyakit Asam Urat dengan Metode Local Binary Pattern (LBP)”, Seminar Nasional Mahasiswa

Ilmu komputer dan Aplikasinya, 1(2), 516-

R. Nuraini. (2022). “Implementasi Jaringan Syaraf Tiruan menggunakan Metode Self- Organizing Map pada Klasifikasi Citra Jenis Ikan Kakap”, Building of Informatic, Technology and Science (BITS), 4(3), 1325-1333.

Y. I. Nurhasanah, I. A. Dewi, F. P. (2020). “Sistem Pengenalan Jenis Kanker Melanoma pada Citra Menggunakan Gray Level Co-occurence Matrix (GLCM) dan K- Nearest Neighbor (KNN) Classifier”, MIND (Multimedia Aritificial Intelligent Network Database) Journal, 5(1) 66-80.

R. M. Haralick, K. Shanmugam, I H Dinstein. (1973). “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, 6, 610-

Solehudin. Annisa. A. Buono. (2020). Cascading LBP-GLCM-JST untuk Model Klasifikasi Makroskopis Kayu Komersial. Unpublished Thesis. Post-Graduate Programme. Bogor: IPB University.


Full Text: PDF

DOI: 10.24269/jkt.v8i2.2962

Refbacks

  • There are currently no refbacks.