THE HIGHER ORDER THINKING SKILL OF PRE-SERVICE TEACHER ACCORDING TO VAN HIELE’S THEORY OF THOUGHT IN ANALYSIS LEVEL
Abstract
The purpose of this study was to characterize teacher candidate students' higher-order thinking skills (HOTS) using the Van Hiele analysis level. The qualitative descriptive method was employed in this study. The Van Hiele Geometry Test and the HOTS test served as the research instruments. Data were gathered via tests and interviews. Next, two participants who, in accordance with Van Hiele's theory, had attained the analytical level among third-semester primary school teacher education students served as the research subjects. According to Van Hiele's theory, the research's findings indicated that the students who attained the analysis level were unable to meet HOTS indicators including analysis, evaluating, and creativity indicators. Since the students did not state proper reasons to support the conclusion, which it was used during the process of conclusion.
Keywords
References
Abdussakir. (2009). Pembelajaran Geometri Sesuai Teori Van Hiele. Jurnal Kependidikan dan Keagamaan. 11(1).
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assesing: A Revision of Bloom’s Taxonomy of Educational Objectives. New York: Addison Wesley Longman, Inc.
Asis, M., Arsyad, N., & Alimuddin. (2015). Profil Kemampuan Spasial Dalam Menyelesaikan Masalah Geometri Siswa Yang Memiliki Kecerdasan Logis Matematis Tinggi Ditinjau Dari Perbedaan Gender (Studi Kasus di kelas XI SMAN 17 Makassar). Jurnal Daya Matematis, 3(1), 78–87.
Bakry, & Bakar, M. N. bin. (2015). The Process of Thinking among Junior High School Students in Solving HOTS Question. International Journal of Evaluation and Research in Education (IJERE), 4(3), 138–145. http://iaesjournal.com/online/index.php/IJERE
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele Levels of Development in Geometry. Source: Journal for Research in Mathematics Education, 17(1), 31–48.
Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. Yearbook of National Council of Teachers of Mathematics, 1–16. http://www.csmate.colostate.edu/docs/math/mathactivities/june2007/The van Hiele Model of the Development of Geometric Thought.pdf
Kim, Y. R. (2016). Analysis of Teaching of Van Hiele Geometry In Schools In Korea. Proceedings of 4th International Congress of Educational Sciences and Development, 21–25.
King, F., Goodson, L., & Rohani, F. (2018). Higher-order thinking skills: Definition, teaching strategies, and assessment. Center for Advancement of Learning and Assessment, Florida State University. www.cala.fsu.edu
Mohamed, R., & Lebar, O. (2017). Authentic Assessment in Assessing Higher Order Thinking Skills. International Journal of Academic Research in Business and Social Sciences, 7(2), 466–476. https://doi.org/10.6007/IJARBSS/v7-i2/2021
NCTM. (2000). Principles and Standars for School Mathematics. The National Council of Teachers of Mathematics, Inc.
Noriza, M. D., & Kartono. (2016). Kemampuan Pemecahan Masalah Dan Disposisi Matematis Berdasarkan Tingkat Berpikir Geometri Pada Model PBL Pendekatan Van Hiele. Seminar Nasional Matematika X Universitas Negeri Semarang, 347–355. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/21608
Pitadjeng. 2015. Pembelajaran Matematika yang Menyenangkan. Yogyakarta: Graha Ilmu.
Putri, L. A., & Nopriana, T. (2019). Tingkat Berpikir Geometri Van Hiele Mahasiswa Pendidikan Matematika. Prosiding Seminar Nasional Pendidikan Matematika, 156–165.
Škrbec, M., & Čadež, T. H. (2015). Identifying and fostering higher levels of geometric thinking. Eurasia Journal of Mathematics, Science and Technology Education, 11(3), 601–617. https://doi.org/10.12973/eurasia.2015.1339a
Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R & D. Alfabeta.
Umar, U., Maulyda, M., Erfan, M., Hidayati, V., & Widodo, A. 2020. Profile Of Thinking Geometry Levels of PGSD Student Programs Based On Van Hiele Theory. Integral : Pendidikan Matematika, 11(1), 33-41.
Unaenah, E., Anggraini, I. A., Aprianti, I., Aini, W. N., Utami, D. C., Khoiriah, S., & Refando, A. (2020). Teori Van Hiele Dalam Pembelajaran Bangun Datar. Jurnal Pendidikan Dan Ilmu Sosial, 2(2), 365–374. https://ejournal.stitpn.ac.id/index.php/nusantara
Usiskin, Z. (1982). Van Hiele Levels and Achievement in Secondary School Geometry. Department of Education, University of Chicago.
Wu, D.-B., & Ma, H.-L. (2006). The Distributions Of Van Hiele Levels Of Geometric Thinking Among 1St Through 6Th Graders (Vol. 5).
Yen, T. S., & Halili, S. H. (2015). Effective Teaching Of Higher-Order Thinking (Hot) In Education. The Online Journal of Distance Education and E-Learning, 3(2), 41–47. www.tojdel.net
DOI: 10.24269/ed.v8i1.2451
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.